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A maximum-likelihood algorithm has been incorporated into a crystal structure

determination from a powder diffraction data framework that uses an

integrated-intensity-based global optimization technique. The algorithm is

appropriate when the structural model being optimized is not a complete

description of the crystal structure under study.

1. Introduction

Recent years have seen signi®cant developments in the

methodologies available for tackling the problem of crystal

structure determination from powder diffraction data and the

range of applicability of the principal techniques (global

optimization and direct methods) has been considerably

extended (David et al., 2002). In particular, global optimiza-

tion methods have found great utility in solving molecular

organic crystal structures where the known chemical connec-

tivity of the molecule under study can be easily translated into

a three-dimensional molecular model. It is the prior chemical

information embedded in this model that provides the

fundamental strength of the global optimization approach.

However, it also introduces a fundamental weakness, in that

the success of the structure determination depends crucially

on the accuracy of the input molecular model. In many cases,

the level of prior chemical knowledge is such that the input

model is quite accurate and the correctness of a trial crystal

structure produced in the global optimization search can be

assessed in a meaningful way. The assessment is normally

performed by comparing diffraction data calculated from a

trial structure with diffraction data measured from a sample,

using a least-squares ®gure of merit (FOM). That is, either as

the weighted sum of squared deviations between the observed

(yobs
i ) and calculated (yi) diffraction patterns using �2

profile �P
i w�yobs

i ÿ yi�2 (Young, 1993), or the weighted sum of

squared deviations between observed (Idata
i ) and calculated

(Ii) integrated intensities of the diffraction pattern [see

equation (7)].

That crystal structures can be solved when the input model

is slightly in error has been demonstrated elsewhere. For

example, omission of hydrogen atoms in a model of the anti-

ulcer drug famotidine had no signi®cant impact on the success

rate in obtaining the crystal structure of famotidine form B

from powder diffraction data using simulated annealing

(McBride, 2000). More signi®cant errors might be introduced

owing to a lack of prior knowledge of phenomena such as

disorder or as the result of approximations made in order to

simplify the input model. For example, there may be too many

independent fragments in a crystal structure for the structure

to be solved by simultaneously optimizing the positions,

orientations and conformations (i.e. the structural parameters)

of all the fragments. In this case, the structure solution process

may be broken down into a series of smaller, seemingly more

tractable, problems. Initially, one or more of the fragments in

the asymmetric unit cell is simply ignored and the structural

parameters of the remaining components are determined. In a

subsequent step, the determined components are then kept

®xed and the structural parameters of the remaining compo-

nents are optimized.1 However, this attractive approach is

hampered by the fact that the principle of least-squares

re®nement is poorly justi®ed when the input model is signi®-

cantly in error. Put straightforwardly, how can certain

components of the crystal structure be optimized against the

measured diffraction data when other components that

contributed to that measured data are ignored? Problems very

similar to those detailed above have been the focus of research

in other areas of crystallography, in particular within the

®eld of macromolecular crystallography. For example, the

maximum-likelihood approach has recently been applied to

improve the threshold for protein structures that might be

used in molecular replacement (Read, 2001). In the area of

protein structure re®nement, maximum likelihood has been

demonstrated to be much better than the traditional least-

squares approach (Pannu & Read, 1996; Murshudov et al.,

1997). The likelihood function has also been utilized in the

®eld of ®bre diffraction (Mu & Makowski, 2000). For further

references on the likelihood approach see, for instance, Read

(1997) and Bricogne (1997a) and references therein.

This paper describes how a maximum-likelihood approach

can be introduced into a framework for global-optimization-

based crystal structure determination from powder diffraction

1 This is the global optimization equivalent of the standard sequence of direct
(or Patterson) methods, partial fragment re®nements and difference Fourier
calculations that is often employed in structure determination from powder
diffraction data.



data. The approach is explained in the context of a real-life

problem, that of optimizing the structural parameters of a

remacemide ion against diffraction data collected from a

powder sample of remacemide nitrate. In the terminology of

this paper, the fragment to be optimized against the measured

diffraction data is known as frag, whilst the fragment that is

not being optimized, but whose contribution to the diffraction

data is still being considered, is known as blur. Thus the

positively charged remacemide ion is referred to as frag, whilst

the negatively charged nitrate group is referred to as blur. A

second example, remacemide acetate, is also discussed.

2. Maximum likelihood in a powder diffraction context

Firstly, it is assumed that the scattering contribution of the blur

fragment is randomly distributed throughout the unit cell. The

consequence of introducing such a blur may be expressed

probabilistically as follows. Denote by I frag � �Ifrag
1 ; . . . ; I

frag
N �

the intensities as calculated from the frag component, and by

I � �I1; . . . ; IN� a set of N intensities. Then, probabilistically,

the consequence of introducing a blur component may be

written as the conditional probability density p�IjI frag�, i.e. the

probability density of some set of intensities given the posi-

tion, orientation and conformation of the frag component and

the fact that the blur component is randomly distributed

throughout the unit cell. Such a probability density was ®rst

studied by Wilson (1949), who considered the statistical

consequence of having all the atoms randomly distributed in

the unit cell and the application of the central limit theorem to

this problem. Subsequently, a number of contributions were

made to calculating this type of distribution under different

circumstances; see, for instance, Read (1997, and references

therein). Of particularly relevance to this study is the work

where the blur probability density is found for the case of a set

of completely overlapping re¯ections in a powder pattern

(Bricogne, 1991). Consider the case where na acentric and nc

centric re¯ections are completely overlapped. The intensity

associated with these overlapping re¯ections is

Ii �
Pna

i�1

phi
�A2

hi
� B2

hi
� �Pnc

i�1

pki
A2

ki
; �1�

where phi
is the multiplicity factor for re¯ection hi. By

performing the appropriate integral over a surface of a

hypersphere of dimension nÿ 1 (Bricogne, 1991), the blur

probability distribution for Ii can be found to be

p�IijIfrag
i � �

1

2�blur
i

Ii

D2
i I

frag
i

� �n=4ÿ1=2

exp ÿ Ii �D2
i I

frag
i

2�blur
i

� �
� In=2ÿ1

Di�IiI
frag
i �1=2

�blur
i

� �
; �2�

where n � 2na � nc, In�z� is the modi®ed Bessel function of

order n. �blur
i � jGj��N;i ÿD2

i �P;i� and Di may be referred to

as the Luzzati weighting factor (Read, 2001), which allows for

the possibility of incorporating uncertainty into the known

part of the structure (i.e. the frag component in the notation

used in x1). With Di � 1, (2) reduces to equation (3.6a) in

Bricogne (1991). In this work, we report practical examples

(see x4) where substantial bene®t is found by employing (2)

with Di � 1, i.e. where frag is treated as being known exactly

and therefore the blur variance can be written as �blur
i �

jGjPj fj�hi�2, where the index j sums over the atoms of the

blur component over the whole unit cell and jGj is the number

of group elements in the point group of the space group of the

crystal. Incorporating additional uncertainty due to errors in

the known part can, for example, be achieved straightfor-

wardly by using the approach of Luzzati (1952). Examples of

this approach will be reported elsewhere.

The probabilistic model used to derive (2) depends upon

the central limit theorem and is thus most accurate when a

large number of atoms are included in the blur. Nevertheless,

even for a small number of atoms (such as a nitrate or acetate

group), the approximation is very good. The dual prior

assumptions of random orientation and random positioning of

a rigid fragment such as a nitrate group are suf®cient to

produce a distribution that is close to completely random for

all but the lowest sin �=� re¯ections. Probability distributions

associated with `random-fragment' rather than `random-atom'

behaviour have been discussed theoretically by Bricogne

(1997b), who expanded the structure-factor distributions in

terms of spherical harmonics. The leading term is still the

random-atom distribution and for powder diffraction data

(where the information content is much lower because of

re¯ection overlap) this term is dominant. The practical validity

of the random-atom approximation to the blur probability

distribution is to be found in the accuracy with which the

location of a `non-blur' component of a crystal structure can

be determined when likelihood optimization (using the

random-atom approximation for the blur component) is

employed (x4). It is, of course, also worth pointing out that the

random-atom approximation has been used with great success

in crystallography, particularly in the ®eld of direct methods.

For instance, Cochran (1955) uses such an approach to derive

the tangent formula and Sim (1960) and Woolfson (1956)

`heavy-atom' weights are derived using the same assumption.

Furthermore, single-crystal versions of (2) are extensively

used in macromolecular crystallography (see, for instance,

Read, 1997, and references therein).

The likelihood function is the probability distribution of the

data given the structural parameters (position, orientation and

conformation) of the model. These re®neable parameters are

conveniently summarized by their set of dependent calculated

intensities I frag and the likelihood function may then be

written as L � p�datajI frag�. It will be assumed that the data

can be summarized by the following multivariable normal

distribution:

p�IdatajI� � �2��ÿN=2jCjÿ1=2 exp�ÿ1
2�Idata ÿ I�TCÿ1�Idata ÿ I��:

�3�

The intensities Idata � �Idata
1 ; Idata

2 ; . . . ; Idata
N � may be deter-

mined from a least-squares Pawley (1981) re®nement or using

the iterative Le Bail method (Le Bail et al., 1988; David et al.,

2002). The matrix Cÿ1 holds information about correlations
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between the intensities of neighbouring re¯ections in the

powder pattern. For example, if none of the re¯ections in the

diffraction pattern are found to overlap, then the correlation

matrix is an N � N diagonal matrix with the diagonal elements

equal to the variance of each of the N re®ned intensities.

Equation (3) is an accurate representation of the diffraction

pattern if either the Pawley (1981) or LeBail method is used

for obtaining Idata and Cÿ1. The likelihood function is

expressed in integral form as follows:

L � R p�IjI frag�p�IdatajI� dI; �4�

i.e. the integral of the product of the blur and data probability

distributions referred to in (2) and (3), respectively. If the

correlation matrix C is diagonal, (4) reduces to a product of N

one-dimensional integrals, where, by expanding the modi®ed

Bessel function in (2) as a power series, the ith one-dimension

integral may be written as the in®nite sum

Li �
1

4�blur
i

C
1=2
ii

21=2�blur
i

� �n=2ÿ1

exp z2 ÿ I
frag
i

2�blur
i

ÿ �I
data
i �2
2Cii

� �
�
X1
k�0

I
frag
i C

1=2
ii

23=2��blur
i �2

� �k
1

k!
in=2�kÿ1erfc�z�; �5�

where inerfc�z� is the repeated integral of the error function

(Abramowitz & Stegun, 1970), z � 2ÿ1=2�C1=2
ii =�2�blur

i � ÿ
Idata

i =C
1=2
ii � and Cii is the ith diagonal element of C. Equation

(5) is the same probability expression as equation (47) in Mu

& Makowski (2000) in the context of ®bre diffraction and, for

n � 2 and n � 1, it reduces to the probability expressions of

equations (17) and (18) in Pannu & Read (1996). However,

the overlap inherent in the diffraction pattern ensures that the

correlation matrix contains off-diagonal elements and there-

fore the integral in (4) cannot be written as a product of one-

dimensional integrals. Evaluation of the integral is therefore

non-trivial, particularly so in the context of a global optimi-

zation search algorithm, where it must be evaluated for each

and every trial structure. Accordingly, the likelihood FOM

�2
like � ÿ log�L� �6�

must be able to be evaluated rapidly if it is to be of use in

structure determination. The following section shows how this

can be achieved. Finally, notice that if I frag represents the

complete content of the asymmetric unit and there is no blur

fragment, then the blur probability density in (2) becomes the

� function and �2
like becomes proportional to the usual least-

squares �-squared FOM, i.e.

�2
like / �2 � Nÿ1�Idata ÿ I frag�TCÿ1�Idata ÿ I frag�: �7�

Thus, the maximum-likelihood approach yields the same FOM

when there is no blur component. However, when a blur

component is included, then the likelihood FOM is expected

to improve the success rate of the global optimization method,

as this FOM incorporates the contribution of the blur frag-

ment in a statistically sound manner.

3. Evaluating the likelihood integral

One option for evaluating the likelihood in (4) is the use of a

Monte Carlo integration algorithm described previously

(Markvardsen et al., 2001). However, whilst such an algorithm

has potential in the context of the re®nement of crystal

structures against powder diffraction data, it is not fast enough

for use with global optimization algorithms. These algorithms

require the evaluation of �2
like for each trial structure and

typically many hundreds of thousands of trial structures are

evaluated in a single structure-solution run. Taking the

structure solution of hydrochlorothiazide from synchrotron

powder diffraction data as an example (23 atoms, 8 degrees of

freedom, 204 re¯ections to 1.5 AÊ resolution, 9726 points in the

pro®le), the DASH program (David et al., 2001) evaluates

approximately 3500 trial structures per second using its �2

FOM when running on a single processor 800 MHz Intel

Pentium III-based computer. Ideally, the evaluation of �2
like

should take place on a comparable timescale such that its

introduction into the global optimization framework does not

result in excessively long run times. The following approxi-

mation is therefore introduced. If the blur probability density

in (2) is actually a Gaussian distribution with mean value ~Ifrag
i

and variance ~�blur
i , then the likelihood integral of (4) can be

evaluated analytically and (6) becomes:

�2
like � 1

2 ln��2��NjRj� � 1
2�Idata ÿ ~I frag�TRÿ1�Idata ÿ ~I frag�; �8�

where R � C� ~Rblur and ~Rblur is an N � N diagonal matrix

with diagonal elements ~�blur
i . The �2

like obtained from (8) can

be rapidly evaluated by ®rst block diagonalizing the inverse

correlation matrix in (3) and inverting this matrix to obtain C;

this only needs to be done once. R may then be calculated and

this matrix inverted in order to calculate the second term in

(8). It is important to note that, whilst N may be large, the size

of the individual blocks produced as a result of the diag-

onalization procedure does not exceed the size of an over-

lapping clump of re¯ections. In a typical high-resolution

diffraction pattern collected to modest spatial resolution,

overlapping clumps seldom exceed 10 re¯ections in size.

Hence C and R will be block-diagonal with a maximum block

size of 10� 10; such matrices are trivial to invert.

Given that (8) can be evaluated quickly and ef®ciently, it

appears promising in the context of structure solution.

However, for it to be useful, it must approximate (4) as closely

as possible and this involves obtaining suitable values of the

mean value ~Ifrag
i and variance ~�blur

i . The following method is

used. @ ln�p�IijIfrag
i ��=@Ii � 0 implies:

�nÿ 2�zÿ1
i � Aiz

ÿ1=2 � yi; �9�
where zi � IiI

frag
i ��blur

i �ÿ2, Ai � In=2�z1=2
i �=In=2ÿ1�z1=2

i � and

yi � �blur
i =I

frag
i . For n � 3, (9) has a unique solution for all

values of the ratio yi (since yi is always positive). If we denote

the values of zi and Ii which satisfy (9) by ~zi and ~Ii, it is seen

that for small values of yi we have ~zÿ1
i ! y2

i (which corre-

sponds to saying ~Ii � I
frag
i ) and for large values of yi we have

~zÿ1
i ! �yi ÿ 1=n�=�nÿ 2�. Hence, (9) may be solved by a

simple quadratic interpolation. The unique solution ~Ii from (9)



is used to estimate ~Ifrag
i when n � 3. When n � 2 and n � 1,

some special care is needed in ®nding an estimate for ~Ifrag
i .

When n � 2, ~Ifrag
i is taken to be the ~Ii solution from (9) for

yi < 1=2; otherwise, it is set to zero. As a result of the Iÿ1
i

singularity at the origin of the blur probability distribution in

(2) when n � 1, it is found that in order to get good estimates

for ~Ifrag
i for this case, then ~Ifrag

i is selected as the ~Ii solution to

the equation Aiz
ÿ1=2 � yi when yi < 1; otherwise it is set to

zero.

The ®nal step is to ®nd good estimates for ~�blur
i . For

n � 3, these are simply taken to be ~�blur
i �

ÿf@2 ln�p�IijIfrag
i ��=@I2

i jIi�~I
frag
i
gÿ1 and substituting (9) into this

expression, then ~�blur
i can be written as:

~�blur
i � ��blur

i yi�2f��1ÿ n=2�yi � �nyi ÿ 1�=4�zÿ1
i � y2

i =4gÿ1j
Ii�~I

frag
i
:

�10�
Notice that ~�blur

i has dimension intensity squared while �blur
i

has dimension intensity. When n � 2, (10) is used for calcu-

lating ~�blur
i when yi < 1=2; otherwise, it is set to

~�blur
i � ÿf@2 ln�p�IijIfrag

i ��=@I2
i jIi�0;Ifrag

i
�2�blur

i
gÿ1 � 8��blur

i �2:
When n � 1, to again circumvent the singularity of the blur

probability at the origin,

~�blur
i � 4��blur

i yi�2f�yi ÿ 1�zÿ1
i � y2

i gÿ1jIi�~I
frag
i
; yi < 1; �11�

otherwise,

~�blur
i � 4��blur

i yi�2f�yi ÿ 1�zÿ1
i � y2

i gÿ1jIi�0;Ifrag
i
��blur

i
� 6��blur

i �2:
The justi®cation for the formulae outlined in this section is

based on an analysis in which the likelihood functions in (4)

and (8) are compared for various test cases as discussed in

Appendix A. In the context of an initial structural solution,

they are certainly suf®ciently accurate, as is demonstrated in

the following section.

4. Practical implementation and testing

4.1. Incorporation into a global optimization framework

The algorithms outlined above were incorporated into a

modi®ed version of the DASH crystal structure determination

program. Brie¯y, DASH normally operates as follows. A

Pawley (1981) ®t to the measured diffraction data is used to

extract a set of correlated integrated intensities and an asso-

ciated covariance matrix. The molecular content of the

asymmetric unit is described using internal coordinates

(Z-matrix format) and in cases where there is more than one

independent structural fragment in the asymmetric unit, a

separate Z matrix is input for each fragment. Simulated

annealing is employed to optimize the structural parameters

of the input fragments against the extracted intensity data

using the �2 FOM in (7). Multiple runs are normally

performed from different random start points in order to

ensure that the global minimum in the �2 search space has

been located.

In the modi®ed version of DASH (henceforth referred to as

ML-DASH), the FOM employed is �2
like as given in (8) but

ignoring the slowly varying ®rst term in that equation.

Furthermore, in order to put �2
like on the same scale as the�2 in

(7), �2
like is taken to be:

�2
like � Nÿ1�Idata ÿ ~I frag�TRÿ1�Idata ÿ ~I frag�: �12�

Further, at the fragment input stage, the option of specifying

whether or not an input fragment should be treated as a frag to

be optimized or as a blur to be incorporated into the calcu-

lations, is provided.

4.2. Reference crystal structure

Remacemide is an anti-convulsant agent synthesized at

AstraZeneca, Loughborough, England, whose crystal struc-

ture and the crystal structures of many of its salt forms have

been investigated by both single-crystal X-ray diffraction and

X-ray powder diffraction (McBride, 2000). The compound

remacemide nitrate (C17H21N2O+ �NO3
ÿ, Fig. 1) was selected

as a suitable example for testing the maximum-likelihood

method. The acetate salt of remacemide was also examined

(x4.6).

The crystal structure of the nitrate salt form (a = 11.7278,

b = 8.9339, c = 15.8738 AÊ , � = 95.95�, P21=a) was ®rst solved

from high-resolution powder diffraction data (Fig. 2) collected

at station BM16 of the ESRF in Grenoble, France. The crystal

structure solution was obtained using DASH, simultaneously

optimizing the structural parameters of both the remacemide

molecule and the nitrate ion. Full details of the structure are

given elsewhere (McBride, 2000) and only relevant points are
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Figure 1
The molecular structure of remacemide nitrate.

Figure 2
A plot of the diffraction data collected from a sample of remacemide
nitrate contained in a 1.0 mm capillary on diffractometer BM16 of the
ESRF. The incident wavelength was 0.85070 AÊ . The inset graph shows an
enlarged view of the high-angle region of the pattern.
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summarized here. The success rate in ®nding the correct

crystal structure over many repeat runs was ~40%. Subse-

quent slack-constrained Rietveld re®nement of the crystal

structure gave an excellent ®t to the data with the following

pro®le agreement factors over the data range 2±40�: �2
profile =

1.83, Rp = 9.20%, Rwp = 9.99% and RE = 7.38%. The re®ned

structure, shown in projection in Fig. 3, was subsequently

veri®ed by laboratory single-crystal X-ray diffraction.

The remacemide nitrate crystal structure has several

features that make it attractive for testing the maximum-

likelihood approach in cases where the input molecular

structure to be optimized is not a complete description of

contents of the asymmetric unit. Firstly, the nitrate ion

constitutes a signi®cant (~18%) but not excessive percentage

of the total scattering power of the crystal. Secondly, as a

small, rigid, independent unit, the nitrate ion is representative

of many of the salts and solvents that frequently complicate

structure solution from powder diffraction data.2 Thirdly, the

fact that the nitrate ion is a discrete entity makes it a

straightforward matter to assess the impact of its omission

from a standard DASH run and its inclusion as a blur in an

ML-DASH run. Finally, the remacemide nitrate crystal

structure has a very characteristic `cartwheel' motif in

projection (see Fig. 3) that enables correct solutions to be

quickly identi®ed amidst the plethora of trial structures

returned from the global optimization runs.

4.3. Benchmark DASH trials

A series of 20 DASH runs was performed in which the

structural parameters of the remacemide and nitrate ions were

optimized against the intensities and associated covariance

matrix extracted from the remacemide nitrate data. These

runs, which essentially repeated the work of McBride, resulted

in answers ranging from the correct crystal structure

(�2 � 130, �2
profile � 3:9) to false minima (�2 � 573, �2

profile =

16.0) with the anticipated success rate of ~40%.
Figure 4
Remacemide nitrate: the best crystal structure obtained by optimizing
only the structural parameters of the remacemide ion against the
remacemide nitrate diffraction data, using the conventional least-squares
version of DASH.

Figure 3
The re®ned crystal structure of remacemide nitrate, viewed in projection
down the a axis.

2 They are therefore often omitted from the initial stages of a global
optimization structure solution in order to simplify the search space.

Table 1
Remacemide nitrate: the results of 20 DASH runs, in which only the
structural parameters of the remacemide ion were optimized against the
remacemide nitrate diffraction data; the nitrate ion was not included in
the calculations.

Run no. �2 �2
profile

1 702.8604 20.1543
2 703.5668 20.1726
3 704.3631 20.2236
4 712.5563 20.9228
5 712.6614 21.0366
6 712.2556 21.0401
7 724.8441 21.7439
8 720.4251 21.7912
9 720.3148 21.9812

10 739.1662 22.5121
11 703.3167 20.0848
12 702.6350 20.1593
13 703.4621 20.1652
14 704.7296 20.3086
15 713.4292 21.0807
16 720.5380 21.8804
17 721.5416 22.2367
18 722.1905 22.4415
19 739.2380 22.5844
20 758.2836 23.2101



4.4. DASH trials ignoring the nitrate ion

A series of 20 DASH runs was performed in which only the

structural parameters of the remacemide ion were optimized

against the intensities and associated covariance matrix

extracted from the remacemide nitrate data. The nitrate ion

was not included in the calculations at any stage. The �2 and

�2
profile values for these runs are listed in Table 1 and the best

solution with regard to the �2 FOM (no. 12) is shown in

projection in Fig. 4.

4.5. ML-DASH trials using the nitrate ion as a blur

A series of 20 ML-DASH runs was performed in which only

the structural parameters of the remacemide ion were opti-

mized against the intensities and associated covariance matrix

extracted from the remacemide nitrate data. The nitrate ion

was input into ML-DASH but was ¯agged for use as a blur.

The �2
like and �2

profile values for these runs are listed in Table 2

and the best solution with regard to the �2
like FOM (no. 11) is

shown in projection in Fig. 5 and overlaid upon the re®ned

crystal structure in Fig. 6.

4.6. Example 2: remacemide acetate

The crystal structure of the acetate salt form of remacemide

was ®rst solved from high-resolution powder diffraction data,

again collected at BM16. The crystal structure (a = 15.4018, b =

6.7683, c = 17.3531 AÊ , � = 93.13�, P21=c) solution was obtained
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Figure 6
Remacemide nitrate: the asymmetric unit of the best remacemide-only
substructure (normal lines) obtained by ML-DASH, superimposed upon
the asymmetric unit of the re®ned remacemide nitrate crystal structure
(bold lines).

Figure 5
Remacemide nitrate: the best crystal structure obtained by optimizing
only the structural parameters of the remacemide ion against the
remacemide nitrate diffraction data, using the modi®ed version of DASH
(i.e. ML-DASH) implementing the maximum-likelihood method.

Table 2
Remacemide nitrate: the results of 20 ML-DASH runs, in which only the
structural parameters of the remacemide ion were optimized against the
remacemide nitrate diffraction data; the nitrate ion was used in the
calculation of the blur.

Run no. �2
like �2

profile

1 72.59 27.48
2 69.67 28.82
3 69.25 27.56
4 70.19 28.69
5 71.54 34.21
6 69.20 28.81
7 53.11 44.61
8 52.95 44.17
9 68.98 27.48

10 74.32 30.40
11 52.90 45.37
12 74.68 27.36
13 53.00 44.84
14 53.30 43.23
15 71.97 32.65
16 70.45 28.58
17 53.34 45.38
18 53.16 44.56
19 70.05 27.09
20 72.66 27.89

Figure 7
The re®ned crystal structure of remacemide acetate, viewed in projection
down the b axis. H atoms are omitted for clarity.
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using DASH, simultaneously optimizing the structural par-

ameters of both the remacemide molecule and the acetate ion.

Full details of the structure are given elsewhere (McBride,

2000). Slack-constrained Rietveld re®nement of the crystal

structure gave an excellent ®t to the data with the following

pro®le agreement factors over the data range 2±37�: �2
profile =

1.76, Rp = 8.48%, Rwp = 9.15% and RE = 6.89%. The re®ned

structure is shown in projection in Fig. 7. Benchmark DASH

runs, repeating the `standard' structure determination process,

resulted in a 70% success rate in returning the correct crystal

structure of remacemide acetate. A further series of ten

standard least-squares DASH runs in which only the structural

parameters of the remacemide ion were optimized against the

intensities and associated covariance matrix extracted from

the remacemide acetate data was also performed. The acetate

ion was not included in the calculations at any stage. The �2

and �2
profile values for these ten runs are listed in Table 3 and

the four packing motifs that were observed in the solutions are

shown in Fig. 8(a), whilst the `best' structure in terms of its

agreement with the re®ned crystal structure is shown in Fig.

8(b). A series of ten ML-DASH runs was performed in which

only the structural parameters of the remacemide ion were

optimized against the intensities and associated covariance

matrix extracted from the remacemide acetate data. The

acetate ion was input into ML-DASH but was ¯agged for use

as a blur. The �2
like and �2

profile values for these runs are listed in

Table 4 and solutions 2 to 10 are shown overlaid upon the

re®ned crystal structure in Fig. 9.

5. Discussion

It is clear from both the examples discussed in x4 that the

least-squares �2 FOM is incapable of directing the global

optimization of the remacemide fragment when the contri-

bution of the counter ion to the diffraction data is ignored. In

Figure 8
Remacemide acetate. (a) The ten solutions returned by DASH when
optimizing only the structural parameters of the remacemide ion against
the remacemide acetate diffraction data can be grouped into four distinct
crystal structures. These structures are viewed in projection down the b
axis and are all distinctly different from the correct structure shown in
Fig. 7. (b) The solution (normal lines) displaying the best agreement with
the correct structure (bold lines). H atoms are omitted for clarity in both
®gures.

Table 3
Remacemide acetate: the results of ten DASH runs, in which only the
structural parameters of the remacemide ion were optimized against the
remacemide acetate diffraction data; the acetate ion was not included in
the calculations.

Run no. �2 �2
profile

1 260.98 40.41
2 252.45 43.23
3 260.11 42.63
4 252.63 43.87
5 245.49 38.54
6 260.45 43.37
7 252.16 43.23
8 245.86 38.85
9 260.31 43.02

10 245.13 38.52

Table 4
Remacemide acetate: the results of ten ML-DASH runs, in which only the
structural parameters of the remacemide ion were optimized against the
remacemide acetate diffraction data; the acetate ion was used in the
calculation of the blur.

Run no. �2
like �2

profile

1 24.68 45.33
2 21.29 54.23
3 21.21 54.23
4 21.66 53.95
5 21.82 54.73
6 21.56 54.37
7 21.02 59.49
8 20.92 55.58
9 21.45 57.53

10 20.78 52.17



the case of remacemide nitrate, the deliberate omission of

18% of the scattering leads to remacemide-only `substruc-

tures' that are incorrectly placed, oriented and folded as a

result of attempting to satisfy the electron density from both

the remacemide and the nitrate ions in the crystal. However,

when the nitrate ion is incorporated as a blur, and the

maximum-likelihood FOM is employed, the situation is

substantially different.

Examination of both Tables 2 and 4 shows that the �2
like

FOM does provide the discrimination needed to distinguish

between good and bad solutions. In Table 2, seven of the

twenty runs (nos. 7, 8, 11, 13, 14, 17 and 18) have values of �2
like

that are substantially lower than those of the other runs.

Examination of the crystal structures associated with these

seven runs shows that they all are essentially identical and that

they are typi®ed by run no. 11, which is shown in projection in

Fig. 5. The `cartwheel' motif indicates the correctness of the

structure in projection whilst Fig. 6 shows that the position,

orientation and the conformation of the remacemide ion have

been very well determined. The fact that the �2
profile values for

these seven runs are amongst the highest seen is worthy of

comment. The �2
profile for any of the solutions obtained where

the contribution of the nitrate ion to the diffracted intensity

was either ignored or included as a blur is expected to be poor,

as the calculation of �2
profile is based upon the contribution of

the remacemide ion only. However, in the least-squares

analysis, �2
profile is minimized whilst in the likelihood analysis it

is not. Thus it is not surprising that the �2
profile associated with

the correctly positioned remacemide ion as found from seven

of the maximum-likelihood runs is much worse than that

associated with the incorrectly positioned remacemide ions

returned by conventional least-squares runs.

The effect of the blur component upon the space searched

by the global optimization algorithm is dramatically illustrated

in Fig. 10, which shows the ®t to the ®rst peak in the diffraction

pro®le for the structure shown in Fig. 5. It is clear that the blur

contribution must confer considerable latitude to the process

of ®tting the extracted intensity associated with this peak. It is

this latitude that ultimately allows the crystal structure to be

solved with respect to the remacemide ion component alone.

The results obtained from the remacemide acetate experi-

ments largely echo the results obtained from the remacemide

nitrate experiments. The ten DASH solutions obtained when

the acetate fragment was ignored fell into four distinct groups,

as shown in Fig. 8(a). It is clear from a comparison with Fig. 7

that in each case the least-squares DASH solution has the

remacemide ion placed in approximately the correct region of

space, but that the solutions are suf®ciently far away from the

correct remacemide-only substructure as to render them

useless as starting models for structural re®nement; see, for

example, Fig. 8(b). In stark contrast, any one of the nine ML-

DASH solutions shown in Fig. 9 would serve as an excellent

starting point for structure completion. Solution no. 1, which is

actually an incorrect answer, is easily identi®ed by its signi®-

cantly higher value of �2
like.

6. Conclusions

The maximum-likelihood method has been introduced to

crystal structure determination from powder diffraction data.

The results presented in this paper give a strong indication

that the likelihood approach has the ability to improve the

success rate of global-optimization-based crystal structure

determination methods in circumstances where the structural

model being optimized is not a complete description of the

crystal structure under study. These ®ndings are in broad

agreement with other comparisons of least-squares and

maximum-likelihood methods in macromolecular crystal-

lography.
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Figure 10
Remacemide nitrate: measured (open circles) and calculated (solid line)
diffraction data for the best remacemide-only substructure obtained by
ML-DASH, i.e. the structure shown in Figs. 5 and 6.

Figure 9
Remacemide acetate: the asymmetric unit of the nine correct remace-
mide-only substructures (normal lines) obtained by ML-DASH, super-
imposed upon the asymmetric unit of the re®ned remacemide acetate
crystal structure (bold lines).
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APPENDIX A

A good approximation to the likelihood formula given in (4)

must follow the overall behaviour of that formula as a function

of the re®neable parameters (i.e. I
frag
i ) for ®xed values of any

data and blur variance, �blur
i . However, as the global optimi-

zation approach to structure solution involves a search for the

global minimum of (4), then the approximation given by (8)

may deviate from (4) by some constant value as a function of

I
frag
i without compromising the validity of the approximation.

Approximating the blur probability in (2) for n > 3 by a

Gaussian distribution leads to a very good approximation to

(8) in any limit. This is not surprising, as when n > 3 the blur

probability distribution is guaranteed to have a unique

maximum away from the origin. As the likelihood is the

integral of the product of this blur distribution with a Gaussian

distribution [derived from the data, see (3)], the product of

these two distributions is expected to be close to another

Gaussian with a modi®ed mean value and standard deviation.

Figs. 11(a±d) shows that this is indeed the case.

Finding a suitable Gaussian approximation to the blur

probability distribution is problematic in the following two

circumstances: ®rstly, when n � 1 and �blur
i =I

frag
i � 1 and,

secondly, when n � 2 and �blur
i =I

frag
i � 1=2, for reasons

explained in x3. However, in both circumstances, these regions

of the blur distributions contribute little information in terms

of favouring particular Ii values, i.e. �blur
i is approximately

equal to or bigger than I
frag
i . Thus, when the value of I

frag
i is

reached for which �blur
i =I

frag
i � 1 (n � 1 case) and

Figure 11
A comparison of the likelihood functions given by (8) (dashed line) and (4) (solid line) with Idata � 1 and standard deviations �0 � 0:1, �0 � 1 and
�0 � 10 as speci®ed in the ®gures. The individual graphs show the likelihood as a function of Ifrag for the cases: (a) n � 10 and �blur � ��blur�1=2 � 0:1, (b)
n � 10 and �blur � 0:25, (c) n � 10 and �blur � 0:5 and (d) n � 3 and �blur � 1. As is expected, when �blur=Idata � 0:1, the likelihood function and its
approximation are almost indistinguishable, as illustrated in (a). This is a general observation for all n and the remaining graphs only show cases where
�blur=Idata > 0:1. Note that in (a) the �0 � 1 line was scaled up by a factor of 3 and the �0 � 10 line scaled up by a factor of 10 for clarity. In the remaining
®gures, those same lines were scaled up by factors of (b) 2 and 10, (c) 5 and 30 and (d) 5 and 30, respectively.



�blur
i =I

frag
i � 1=2 (n � 2 case) we are a priori very uncertain

about this calculated intensity and as I
frag
i is decreased still

further, this uncertainty increases. Hence, this suggests that a

suitable approximation is one in which, as I
frag
i goes below the

threshold values just mentioned, the blur probability distri-

bution is kept constant. This is equivalent to saying that we do

not distinguish in terms of likelihood between such I
frag
i values.

Importantly, this approximation, which is both intuitive and

conservative, does not lead to unphysical results in any limits

and Figs. 12(a±d) shows it to be a reasonable approximation to

(4) even in regions where the largest discrepancies are

expected, i.e. where �blur
i =Idata

i � 0:1.

It should be clear from x3 that these approximations are

applied for block integrals of dimension greater than one in

(8). For block integrals of dimension equal to one, the

expression in (5) can be evaluated ef®ciently from a table via a

simple extrapolation algorithm.
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